
Aether Documentation
Release 0.0.1

Aether Developers

Oct 11, 2022

GETTING STARTED

1 GitHub 3
1.1 Download the source code from GitHub . 3

2 System requirements 5
2.1 C and C++ compilers . 5
2.2 Python . 5
2.3 NetCDF . 5

3 Pleiades 7
3.1 Environment overview . 7
3.2 Logging on and getting onto a PFE . 7
3.3 Home and scratch . 7
3.4 Accounting . 7

4 Installing CESM 9
4.1 Download CESM on a laptop or Cheyenne . 9
4.2 Log on to a pfe node . 9

5 Creating a cube sphere case 11
5.1 config_machines.xml . 11
5.2 Available grids . 11
5.3 Building a case . 12
5.4 Submitting a job . 14
5.5 Restart file . 14
5.6 References . 15

6 Grid code 17

7 CAM-SE 19
7.1 Overview . 19
7.2 First attempt . 19
7.3 Second attempt . 20

8 CSLAM 23
8.1 Compatible grids . 23
8.2 Location within CESM . 23
8.3 The meaning of the physics grid . 24
8.4 Running the physics grid at lower resolution . 25
8.5 References . 25

9 Terminology 27

i

9.1 CSLAM . 27
9.2 FVM . 27
9.3 GLL . 27
9.4 References . 27

10 Parallel I/O 29
10.1 Makefile . 29
10.2 buildlib.pio . 30

11 Overview 31
11.1 Nomenclature . 31
11.2 Coding standards . 32
11.3 Directory structure . 32
11.4 References . 32

12 advection 33

13 atmos_phys 35

14 chemistry 37

15 control 39

16 cpl 41

17 dynamics 43

18 ionosphere 45

19 physics 47

20 unit_drivers 49

21 utils 51

22 WACCM-X 53

23 Tutorial 55

24 First attempt at building FHISTX for the ne16 grid 57

25 Second attempt at building FHISTX for the ne16 grid 59

26 Failed attempts until success with the ne30 grid 61

27 Getting the compiler to save the post-preprocessed files 63
27.1 buildlib.py . 63

28 Appending -E to the compiler flags 65

29 Appending -save-temps to the compiler flags 67

30 References 69

31 WACCM-X 71

32 Tutorial 73

ii

33 First attempt at building FHISTX for the ne16 grid 75

34 Second attempt at building FHISTX for the ne16 grid 77

35 Failed attempts until success with the ne30 grid 79

36 Getting the compiler to save the post-preprocessed files 81
36.1 buildlib.py . 81

37 Appending -E to the compiler flags 83

38 Appending -save-temps to the compiler flags 85

39 References 87

40 Compiling with mkmf 89
40.1 Errors encountered . 89

41 Linking to ESMF 91

42 DART 93
42.1 References . 93

43 Filtering theory 95

44 Monte Carlo ensembles 97

45 Docker 99
45.1 Conda . 99
45.2 Building a Docker image . 99
45.3 Verify your version of git . 100
45.4 Adding a submodule to a repository . 100
45.5 Modifying your git config to show the status of submodules . 100
45.6 Organization of the .gitmodules file . 100
45.7 Cloning a repository and its submodules . 100
45.8 Removing a submodule from a repository . 101

46 Verification tests 103

47 Coding school 105

48 Contributors’ Guide 107
48.1 Contributing source code . 107
48.2 GitHub instructional tutorials . 107
48.3 Contributing documentation . 107

49 Core Team 109
49.1 Team members . 109

50 reStructuredText Style Guide 111
50.1 Major Title . 111
50.2 Link Examples . 111
50.3 Useful Syntax . 112
50.4 Code Examples . 113
50.5 Nested Lists and Inline Literals . 113
50.6 Bullet List . 114
50.7 Tables . 114

iii

50.8 Citations . 114

51 Git submodules 115
51.1 Verify your version of git . 115
51.2 Adding a submodule to a repository . 115
51.3 Modifying your git config to show the status of submodules . 115
51.4 Organization of the .gitmodules file . 116
51.5 Cloning a repository and its submodules . 116
51.6 Removing a submodule from a repository . 116

52 Sphinx as a Documentation Tool 117
52.1 Installing Conda . 117
52.2 Downloading Sphinx . 117
52.3 Clone the Repository . 118
52.4 Edit Files and Remake the Documentation . 118

iv

Aether Documentation, Release 0.0.1

Welcome to the documentation of the Aether Model.

Aether is an extremely flexible community-based multi-scale ionosphere-thermosphere model. Ensemble capability,
data assimilation, and uncertainty quantification are fundamentally integrated into the core of the model.

Aether is an open-source model, allowing contributors from across the globe to create, incorporate, and commit new
solvers, schemes, and physics modules.

Users have straightforward defaults in the model configuration, but are able to select any contributor’s modules in order
to allow for maximum flexibility. For example, users can employ faster, less accurate solvers (for prediction) and slower,
more accurate solvers (for science).

GETTING STARTED 1

Aether Documentation, Release 0.0.1

2 GETTING STARTED

CHAPTER

ONE

GITHUB

Since Aether is an open-source project, all of the model source code is available via GitHub.com.

Note: If you want to contribute your own code to Aether, please read the Contributors’ Guide.

If you just want to download the source code, use the following steps.

1.1 Download the source code from GitHub

This guide assumes you are using an operating system such as MacOS, Linux or UNIX.

1. Open a terminal window, navigate to the directory you want the source code downloaded into and clone the
repository.

$ git clone https://github.com/AetherModel/Aether.git

2. Navigate into src subdirectory of the repository.

$ cd Aether/src
$ ls
Makefile init_geo_grid.cpp
add_sources.cpp inputs.cpp
advance.cpp ions.cpp
bfield.cpp main.cpp
calc_chemical_sources.cpp neutrals.cpp
calc_chemistry.cpp output.cpp
[...]
file_input.cpp test.cpp
fill_grid.cpp time.cpp
grid.cpp time_conversion.cpp
indices.cpp transform.cpp

3

https://github.com/AetherModel/Aether

Aether Documentation, Release 0.0.1

4 Chapter 1. GitHub

CHAPTER

TWO

SYSTEM REQUIREMENTS

Aether is written using C, C++ and python. Aether also uses NetCDF.

2.1 C and C++ compilers

The GNU compiler collection provides compilers for C and C++.

2.2 Python

Python is an interpreted language, meaning it doesn’t need to be compiled.

2.3 NetCDF

The Network Common Data Form (NetCDF) is a set of software libraries created by Unidata.

5

https://gcc.gnu.org/
https://www.python.org/
https://www.unidata.ucar.edu/software/netcdf/

Aether Documentation, Release 0.0.1

6 Chapter 2. System requirements

CHAPTER

THREE

PLEIADES

3.1 Environment overview

Pleiades’ environment is protected by secure front ends (SFEs) that users must log in to before ssh’ing into either the
Pleiades front ends (PFEs) or the Lou front ends (LFEs).

3.2 Logging on and getting onto a PFE

ssh $USER@sfe7.nas.nasa.gov
[Password]
[PASSCODE from SecurID]
ssh pfe
[Password]

3.3 Home and scratch

The home directory can be accessed via:

/home3/$USER

The scratch directory can be accessed via:

/nobackup/$USER

3.4 Accounting

Jobs are charged different rates depending on which machine they are run on.

A user’s default group id is listed in the /etc/passwd file.

7

https://www.nas.nasa.gov/hecc/support/kb/hpc-environment-overview_25.html
https://www.nas.nasa.gov/hecc/support/kb/job-accounting_171.html

Aether Documentation, Release 0.0.1

8 Chapter 3. Pleiades

CHAPTER

FOUR

INSTALLING CESM

Community Earth System Model (CESM) installation instructions are available via the README on the GitHub repos-
itory. The cube sphere grid is available as of CESM2.2.0.

Note: svn isn’t installed on the pfe nodes, thus the checkout_externals script fails because it is needed to download
CESM/components/cam/chem_proc. To get around this issue, download CESM on a laptop or Cheyenne, tar the
resulting file and transfer it to Pleiades.

4.1 Download CESM on a laptop or Cheyenne

cd <installation_directory>
git clone https://github.com/ESCOMP/CESM.git cesm2_2_0
cd cesm2_2_0
git checkout release-cesm2.2.0
./manage_externals/checkout_externals

4.2 Log on to a pfe node

cd /nobackup/$USER
sftp <user>@data-access.ucar.edu
get /glade/work/$USER/CESM.tar.gz
exit
tar -xvf CESM.tar.gz

9

https://github.com/ESCOMP/CESM

Aether Documentation, Release 0.0.1

10 Chapter 4. Installing CESM

CHAPTER

FIVE

CREATING A CUBE SPHERE CASE

Important: CESM has already been ported and should work “out of the box” on most of the supercomputers that are
widely used in the geosciences community, including Pleiades. When compiling the model, ensure to set the machine
command line option, --mach to match the supercomputer you are working on. However, the modules that are installed
on any machine change over time. CESM requires knowledge of which MPI and netCDF libraries are available. These
modules are set in the config_machines.xml file.

5.1 config_machines.xml

As of February 22, 2022, the config_machines.xml file is configured properly to compile CESM on Pleiades Broad-
well cluster which is denoted as pleaides-bro.

The config_machines.xml can be copied from:

/nobackup/bjohns28/CESM/cime/config/cesm/machines/config_machines.xml

to the analagous path in your own CESM installation or you can use the create_newcase build script in this CESM
installation.

5.2 Available grids

Lauritzen et al. (2017)1 list the available cube sphere grids in their Table 1. A subset of their table is reproduced here.

Grid name Average node spacing Model timestep
ne16np4 208 km 1,800 s
ne30np4 111 km 1,800 s
ne60np4 56 km 900 s
ne120np4 28 km 450 s
ne240np4 14 km 225 s

1 Lauritzen, P. H., and Coauthors, 2018: NCAR Release of CAM-SE in CESM2.0: A Reformulation of the Spectral Element Dynamical Core in
Dry-Mass Vertical Coordinates With Comprehensive Treatment of Condensates and Energy. Journal of Advances in Modeling Earth Systems, 10,
1537–1570, doi:10.1029/2017MS001257.

11

https://doi.org/10.1029/2017MS001257

Aether Documentation, Release 0.0.1

5.3 Building a case

The scripts for building cases within CESM are part of a software collection known as the Common Infrastructure for
Modeling the Earth (CIME). This software supports both NCAR models and those developed within the Department
of Energy’s Energy Exascale Earth System Model (E3SM) collection. Thus the build scripts to create a new case are
contained within the cime subdirectory.

cd /nobackup/bjohns28/CESM/cime/scripts
ls
climate_reproducibility create_newcase data_assimilation lib query_
→˓testlists Tools
create_clone create_test fortran_unit_testing query_config tests

The create_newcase script is invoked and passed command line arguments to build a new case.

Com-
mand
line
op-
tion

Meaning

--case The directory the case will be built in. It is common practice to include the experiment’s grid resolution
and component set (described below) in the name of the case so that these aspects can be easily identified
when browsing the file system later.

--compsetThe component set of the experiment, including which models will be actively integrating (atmosphere,
land, ocean, sea ice) and what boundary forcing will be used. CESM has an extensive list of component set
definitions and these instructions using the FHIST compset, which has an active atmospheric component,
the Community Atmosphere Model version 6, and historical sea surface forcing, staring in 1979.

--res The grid resolution the model will run on. Each grid includes at least two parts, the atmospheric/land
grid and the ocean/sea ice grid to which it is coupled. These instructions use a low-resolution cube-sphere
grid for the atmosphere, ne30np4 and couple it to a ~1° ocean/sea ice grid, gx1v7. These grid names are
truncated into ne30_g17. Again, CESM has an extensive list of available grids.

--mach The upercomputer the case will be built on. These instructions build a case on NCAR’s Cheyenne com-
puter, however, if you are building on Pleiades, consult the table in the note below.

--projectThe account code the project will be run on. When jobs from the experiment are run, the specified account
will automatically be debited. Replace PXXXXXXXX with your project code.

--run-unsupportedSince the cube-sphere grid is a newly released aspect of CESM that is not used in Coupled Model Inter-
comparison Project runs, it is not considered a scientifically supported grid yet. In order to use it, you need
to append this option.

Note: If you are building on pleiades, the core layout per node differs based on which nodes you are using. These
differences are alreay accounted for within CESM. When specifying --mach there are four valid options:

Compute node processor Corresponding --mach option
Broadwell pleiades-bro
Haswell pleiades-has
Ivy Bridge pleiades-ivy
Sandy Bridge pleiades-san

12 Chapter 5. Creating a cube sphere case

https://www.cesm.ucar.edu/models/cesm2/config/compsets.html
https://www.cesm.ucar.edu/models/cesm2/config/compsets.html
https://www.cesm.ucar.edu/models/cesm2/config/grids.html

Aether Documentation, Release 0.0.1

5.3.1 Identifying your GroupID

You will need to find your GroupID on NASA systems using the groups command:

groups $USER
<user> : sXXXX

Insert the returned group after the --project option when invoking create_newcase below.

To build a case using the ~1° ne30 cube sphere grid:

mkdir /nobackup/bjohns28/cases
cd /nobackup/bjohns28/CESM/cime/scripts
./create_newcase --case /nobackup/bjohns28/cases/FHIST.cesm2_2_0.ne30_g17.001 --compset␣
→˓FHIST --res ne30_g17 --mach pleiades-bro --project sXXXX --run-unsupported
[...]
Creating Case directory /nobackup/bjohns28/cases/FHIST.cesm2_2_0.ne30_g17.001

The case directory has successfully been created. Change to the case directory and set up the case.

cd /nobackup/bjohns28/cases/FHIST.cesm2_2_0.ne30_g17.001
./case.setup

The case.setup script scaffolds out the case directory, creating the Buildconf and CaseDocs directories that you
can customize. These instructions use the default configurations and continue on to compiling the model. On machines
such as pleaides that don’t throttle CPU usage on the pfe nodes, the case.build command can be invoked directly.

./case.build

Note: On Cheyenne, however, CPU intensive activities are killed on the login nodes, you will need to use a build
wrapper to build the model on a shared compute node and specify a project code. Again, replace PXXXXXXXX with your
project code.

qcmd -q share -l select=1 -A PXXXXXXXX -- ./case.build

The model build should progress for several minutes. If it compiles properly, a success message should be printed.

[...]
Time spent not building: 20.459729 sec
Time spent building: 719.937638 sec
MODEL BUILD HAS FINISHED SUCCESSFULLY

The model is actually built and run in a user’s scratch space.

/nobackup/bjohns28/FHIST.cesm2_2_0.ne30_g17.001/bld/cesm.exe

5.3. Building a case 13

Aether Documentation, Release 0.0.1

5.4 Submitting a job

To submit a job, change to the case directory and use the case.submit script. The -M begin,end option sends the
user an email when the job starts and stops running.

When the case is built, its default configuration is to run for five model days. This setting can be changed to run for a
single model day using ./xmlchange STOP_N=1.

cd /nobackup/bjohns28/cases/FHIST.cesm2_2_0.ne30_g17.001
./xmlchange STOP_N=1
./case.submit -M begin,end

5.5 Restart file

After the job completes, restart files are written to the run directory which is also in scratch space. These restart files
are written for both active and data components. The CAM restart file contains a cam.r substring. By default, the
FHIST case begins on January 1st, 1979. Thus, the restart file will be for January 2nd, 1979.

/nobackup/bjohns28/FHIST.cesm2_2_0.ne30_g17.001/run/FHIST.cesm2_2_0.ne30_g17.001.cam.r.
→˓1979-01-02-00000.nc

The fields in the restart file can be plotted using various langauges such as MATLAB or Python’s matplotlib, as seen
here.

14 Chapter 5. Creating a cube sphere case

Aether Documentation, Release 0.0.1

5.6 References

5.6. References 15

Aether Documentation, Release 0.0.1

16 Chapter 5. Creating a cube sphere case

CHAPTER

SIX

GRID CODE

CAM’s dyn_grid.F90 module is responsible for creating a grid object for CAM. There are four different versions of
this module:

cd /nobackup/bjohns28/CESM/components/cam/src/dynamics
find . -name "dyn_grid.F90"
./se/dyn_grid.F90
./fv/dyn_grid.F90
./eul/dyn_grid.F90
./fv3/dyn_grid.F90

Each of these modules depends on other CAM modules, obviously, but the intersection set of modules that all four of
the dyn_grid.F90 is small and manageable.

According to the comments at the top of the source code, the module has two primary responsibilites:

• Provide the physics/dynamics coupler (in module phys_grid) with data for the physics grid on the dynamics
decomposition.

• Create CAM grid objects that are used by the I/O functionality to read data from an unstructured grid format to
the dynamics data structures, and to write from the dynamics data structures to unstructured grid format. The
global column ordering for the unstructured grid is determined by the SE dycore.

The goal is to extract the se/dyn_grid.F90 source code so that it can be compiled without having to build the rest of
the CESM code and provide a grid object for Aether.

cd /nobackup/bjohns28/CESM/components/cam/src/
grep -Rl dyn_grid ./
[...]
./dynamics/se/dyn_comp.F90
./dynamics/se/interp_mod.F90
./dynamics/se/restart_dynamics.F90
./dynamics/se/gravity_waves_sources.F90
./dynamics/se/dp_coupling.F90
./dynamics/se/stepon.F90
[...]

17

Aether Documentation, Release 0.0.1

18 Chapter 6. Grid code

CHAPTER

SEVEN

CAM-SE

7.1 Overview

This page documents the attempt to understand how CAM is compiled within the CIME framework.

7.2 First attempt

Compile a CAM-SE executable and examine the build log.

From examining the build log here, it appears that CAM is compiled as a static library file. Library files contain a set
of subprograms that are compiled into a single binary library file.

Static libraries are bound to an executable before execution. Static libraries have the suffix “a” which denotes “archive.”

Dynamic libraries can be bound to an executable at runtime. Dynamic libraries have the suffix “so” which denotes
“shared object.”

7.2.1 Build log from the first attempt

/glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.002/bld/atm.bldlog.220611-170051.gz

Altering the gmake command for libatm.a to what it would be for a new case (with case suffix .003) results in:

gmake complib -j 8 MODEL=cam COMPLIB=/glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.
→˓003/bld/lib/libatm.a -f
/glade/work/johnsonb/cesm_runs/FHIST.cesm2_2_0.ne30_g17.003/Tools/Makefile
CIME_MODEL=cesm SMP=FALSE CASEROOT="/glade/work/johnsonb/cesm_runs/FHIST.cesm2_2_0.ne30_
→˓g17.003"
CASETOOLS="/glade/work/johnsonb/cesm_runs/FHIST.cesm2_2_0.ne30_g17.003/Tools"
CIMEROOT="/glade/work/johnsonb/cesm2_2_0/cime" COMP_INTERFACE="mct" COMPILER="intel"
DEBUG="FALSE" EXEROOT="/glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003/bld"
INCROOT="/glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003/bld/lib/include"
LIBROOT="/glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003/bld/lib"
MACH="cheyenne" MPILIB="mpt" NINST_VALUE="c1a1l1i1o1r1g1w1i1e1" OS="LINUX"
PIO_VERSION="1" SHAREDLIBROOT="/glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003/bld"
SMP_PRESENT="FALSE" USE_ESMF_LIB="FALSE" USE_MOAB="FALSE" CAM_CONFIG_OPTS="-physcam6"
COMP_LND="clm" COMPARE_TO_NUOPC="FALSE" CISM_USE_TRILINOS="FALSE" USE_TRILINOS="FALSE"
USE_ALBANY="FALSE" USE_PETSC="FALSE" USER_CPPDEFS=' -DPLON=1 -DPLAT=1 -DNUM_COMP_
→˓INST_ATM=1

(continues on next page)

19

Aether Documentation, Release 0.0.1

(continued from previous page)

-DNUM_COMP_INST_LND=1 -DNUM_COMP_INST_OCN=1 -DNUM_COMP_INST_ICE=1 -DNUM_COMP_INST_GLC=1
-DNUM_COMP_INST_ROF=1 -DNUM_COMP_INST_WAV=1 -DNUM_COMP_INST_IAC=1 -DNUM_COMP_INST_ESP=1
-DCAM -D_WK_GRAD -DNP=4 -DHAVE_F2003_PTR_BND_REMAP -D_MPI -DPLEV=32 -DPCNST=33
-DPCOLS=16 -DPSUBCOLS=1 -DN_RAD_CNST=30 -DPTRM=1 -DPTRN=1 -DPTRK=1 -DSPMD -DMODAL_AERO
-DMODAL_AERO_4MODE -DCLUBB_SGS -DCLUBB_CAM -DNO_LAPACK_ISNAN -DCLUBB_REAL_TYPE=dp'

When trying to run the gmake command for a case that is set up but not built, $SOURCES and $BASENAMES aren’t set.

cd /glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.002
grep -Rl SOURCES ./
[...]
Returns many things
grep -Rl BASENAMES ./
Returns nothing...

7.3 Second attempt

This attempt will build a CESM case using ./case.build after editing the Makefile to echo the values of environ-
mental variables.

./create_newcase --case /glade/work/johnsonb/cesm_runs/FHIST.cesm2_2_0.ne30_g17.003 --
→˓compset FHIST --res ne30_g17 --mach cheyenne --project P86850054 --run-unsupported

What actually builds libatm.a?

cd /glade/work/johnsonb/cesm_runs/FHIST.cesm2_2_0.ne30_g17.003
grep -Rl libatm ./
./Tools/Makefile

I edited the Makefile to echo $(SOURCES), $(BASENAMES), $(OBJS), $(INCS):

801 #---
802 # Build & include dependency files
803 #---
[...]
829
830 Filepath:
831 @echo "SOURCES=$(SOURCES)"
832 @echo "BASENAMES=$(BASENAMES)"
833 @echo "OBJS=$(OBJS)"
834 @echo "INCS=$(INCS)"
835 @echo "$(VPATH)" > $@

After making the above edits, build the case:

qcmd -q share -l select=1 -A $DARES_PROJECT -- ./case.build
[...]
Building cesm from /glade/work/johnsonb/cesm2_2_0/cime/src/drivers/mct/cime_config/
→˓buildexe with output to /glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003/bld/cesm.
→˓bldlog.220707-143352
Time spent not building: 52.000454 sec

(continues on next page)

20 Chapter 7. CAM-SE

Aether Documentation, Release 0.0.1

(continued from previous page)

Time spent building: 1138.138125 sec
MODEL BUILD HAS FINISHED SUCCESSFULLY

Try to find where $(BASENAMES) was echoed:

cd /glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003
grep -Rl BASENAMES ./
Still returns nothing ...

7.3.1 Resulting object and library files

All of the CAM object files are compiled here:

cd /glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003/bld/atm/obj
ls *dyn_grid*
dyn_grid.mod dyn_grid.o dyn_grid.optrpt

The actual library files are compiled here:

cd /glade/scratch/johnsonb/FHIST.cesm2_2_0.ne30_g17.003/bld/lib
ls
include libatm.a libesp.a libglc.a libiac.a libice.a libocn.a librof.a libwav.a

Note that libatm.a is a 53MB file.

7.3. Second attempt 21

Aether Documentation, Release 0.0.1

22 Chapter 7. CAM-SE

CHAPTER

EIGHT

CSLAM

8.1 Compatible grids

There are four grid resolutions in CAM that interface with CSLAM:

Resolution Description
ne30pg3_ne30pg3_mg17 Approximately 1 degree CAM-SE-CSLAM
ne30pg2_ne30pg2_mg17 Approximately 1 degree CAM-SE-CSLAM with 1.5 degree physics grid
ne120pg3_ne120pg3_mt13 Approximately 1/4 degree CAM-SE-CSLAM
ne120pg2_ne120pg2_mt12 Approximately 1/4 degree CAM-SE-CSLAM with 3/8 degree physics grid

8.2 Location within CESM

cd $CESMROOT
grep -Rl CSLAM ./

• ./components/cam/tools/topo_tool/cube_to_target/reconstruct.F90

– Provides functions for performing conservative interpolation between cubed sphere and lat lon grids.

• ./components/cam/src/dynamics/se/dyn_comp.F90

– CAM interfaces to the SE Dynamical Core

• ./components/cam/src/dynamics/se/interp_mod.F90

– Module containing subroutines and functions for interpolation.

• ./components/cam/src/dynamics/se/dycore/global_norms_mod.F90

– Module for computing global integrals and CFL conditions

• ./components/cam/src/dynamics/se/dycore/prim_advance_mod.F90

– Contains logic to advance the model a single timestep

• ./components/cam/src/dynamics/se/dycore/dimensions_mod.F90

– This is a non-monophyletic module that contains node specification and other things such as, “scaling of
viscosity in sponge layer.”

• ./components/cam/src/dynamics/se/dycore/fvm_mod.F90

– FVM_MOD File for the fvm project

• ./components/cam/src/dynamics/se/dycore/prim_driver_mod.F90

23

https://ncar.github.io/CAM/doc/build/html/users_guide/atmospheric-configurations.html#cam-developmental-compsets

Aether Documentation, Release 0.0.1

– Primary driver mod?

• ./components/cam/src/dynamics/se/dycore/fvm_mapping.F90

– Two things in this module:

1. pg2->pg3 mapping as discussed in Herrington et al., 2019a1 . The pg3 grid divides each GLL grid
cell into 3x3 control volumes, while the pg2 grid divides each GLL grid cell into 2x2 control volumes.
Herrington et al., 2019a claim that, “the effective resolution of the model is not degraded through the
use of a coarser-resolution physics grid. Since the physics makes up about half the computational cost
of the conventional CAM-SE-CSLAM configuration, the coarser physics grid may allow for significant
cost savings with little to no downside.”

2. pg3->GLL and GLL->pg3 mapping, (Herrington et al., 2019b2)

• ./components/cam/src/dynamics/se/dycore/fvm_consistent_se_cslam.F90

–

• ./components/cam/src/dynamics/se/dycore/prim_advection_mod.F90

• ./components/cam/src/dynamics/se/dycore/prim_state_mod.F90

• ./components/cam/src/dynamics/se/dycore/hybrid_mod.F90

• ./components/cam/src/dynamics/se/dycore/fvm_analytic_mod.F90

• ./components/cam/src/dynamics/se/dycore/fvm_control_volume_mod.F90

• ./components/cam/src/dynamics/se/restart_dynamics.F90

• ./components/cam/src/dynamics/se/dyn_grid.F90

• ./components/cam/src/dynamics/se/dp_mapping.F90

• ./ChangeLog

8.3 The meaning of the physics grid

When the documentation talks about the “physics” grid when CAM-SE is being used, it is referring to the finite volume
method grid upon which CSLAM is being executed:

vim ./components/cam/doc/ChangeLog
[...]
components/cam/src/dynamics/se/dyn_comp.F90
[...]
the loop that sets analytic ICs for constituents directly on the
physics grid has been removed. Instead all constituents are initially
set on the GLL grid, then mapped to the physics grid when CSLAM is used.
[...]

1 Herrington, A. R., P. H. Lauritzen, K. A. Reed, S. Goldhaber, and B. E. Eaton, 2019a: Exploring a Lower-Resolution Physics Grid in CAM-
SE-CSLAM. Journal of Advances in Modeling Earth Systems, 11, 1894–1916, https://doi.org/10.1029/2019MS001684.

2 Herrington, A. R., P. H. Lauritzen, M. A. Taylor, S. Goldhaber, B. E. Eaton, J. T. Bacmeister, K. A. Reed, and P. A. Ullrich, 2019b:
Physics–Dynamics Coupling with Element-Based High-Order Galerkin Methods: Quasi-Equal-Area Physics Grid. Monthly Weather Review, 147,
69–84, https://doi.org/10.1175/MWR-D-18-0136.1.

24 Chapter 8. CSLAM

https://doi.org/10.1029/2019MS001684
https://doi.org/10.1175/MWR-D-18-0136.1

Aether Documentation, Release 0.0.1

8.4 Running the physics grid at lower resolution

Herrington et al., 2019aPage 24, 1 show that the physics grid can be run at lower resolution on the pg2 grid (which
subdivides the cube sphere into 2x2 control volumes) with negligible ill-effects when compared to running at a higher
resolution on the pg3 grid (which subdivides the cube sphere into 3x3 control volumes).

8.5 References

8.4. Running the physics grid at lower resolution 25

Aether Documentation, Release 0.0.1

26 Chapter 8. CSLAM

CHAPTER

NINE

TERMINOLOGY

9.1 CSLAM

A semi-Lagrangian, finite volume advection scheme known as the Conservative Semi-Lagrangian Multitracer
(CSLAM; Lauritzen et al., 20171).

Note that when implemented in WACCM, CSLAM is four times faster than the CAM-SE (Lauritzen, 20192).

9.2 FVM

If CSLAM is used for advection, it uses a finite volume method (FVM) grid and the results are then coupled to the
cube-sphere grid.

9.3 GLL

In the SE dynamical core, the grid is known as the GLL grid because its columns are located at the Gauss-Lobatto-
Legendre quadrature points.

9.4 References

1 Lauritzen, P. H., M. A. Taylor, J. Overfelt, P. A. Ullrich, R. D. Nair, S. Goldhaber, and R. Kelly, 2017: CAM-SE–CSLAM: Consistent Coupling
of a Conservative Semi-Lagrangian Finite-Volume Method with Spectral Element Dynamics. Monthly Weather Review, 145, 833–855, https://doi.
org/10.1175/MWR-D-16-0258.1.

2 Lauritzen, P. H., 2019: Dynamical cores across scales in CESM. 2019 CESM Workshop. https://www.cesm.ucar.edu/events/workshops/ws.
2019/presentations/cross/lauritzen.pdf

27

https://doi.org/10.1175/MWR-D-16-0258.1
https://doi.org/10.1175/MWR-D-16-0258.1
https://www.cesm.ucar.edu/events/workshops/ws.2019/presentations/cross/lauritzen.pdf
https://www.cesm.ucar.edu/events/workshops/ws.2019/presentations/cross/lauritzen.pdf

Aether Documentation, Release 0.0.1

28 Chapter 9. Terminology

CHAPTER

TEN

PARALLEL I/O

The Parallel I/O library enables applications to read and write netCDF files from a large number of processors.

CESM uses it to handle its reading and writing of netCDF files. Within the Common Infrastructure for Modeling the
Earth (CIME) it is structured as an external.

cd $CESMROOT
grep -Rl PIO_LIBDIR ./
[...]
./cime/scripts/Tools/Makefile
./cime/src/build_scripts/buildlib.pio

10.1 Makefile

A literal makefile used by CIME to build components.

731 CMAKE_OPTS += -D CMAKE_Fortran_FLAGS:STRING="$(FFLAGS) $(EXTRA_PIO_FPPDEFS)
→˓$(INCLDIR)" \
732 -D CMAKE_C_FLAGS:STRING="$(CFLAGS) $(EXTRA_PIO_CPPDEFS) $(INCLDIR)" \
733 -D CMAKE_CXX_FLAGS:STRING="$(CXXFLAGS) $(EXTRA_PIO_CPPDEFS) $(INCLDIR)" \
734 -D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
735 -D GPTL_PATH:STRING=$(INSTALL_SHAREDPATH) \
736 -D PIO_ENABLE_TESTS:BOOL=OFF \
737 -D PIO_USE_MALLOC:BOOL=ON \
738 -D USER_CMAKE_MODULE_PATH:LIST="$(CIMEROOT)/src/CMake;$(CIMEROOT)/src/
→˓externals/pio2/cmake" \
[...]
777 # CMake doesn't seem to like it when you define compilers via -D
778 # CMAKE_C_COMPILER, etc., when you rerun cmake with an existing
779 # cache. So doing this via environment variables instead.
780 ifndef CMAKE_ENV_VARS
781 CMAKE_ENV_VARS :=
782 endif
783 CMAKE_ENV_VARS += CC=$(CC) \
784 CXX=$(CXX) \
785 FC=$(FC) \
786 LDFLAGS="$(LDFLAGS)"
[...]
797 $(PIO_LIBDIR)/Makefile:

(continues on next page)

29

https://github.com/NCAR/ParallelIO

Aether Documentation, Release 0.0.1

(continued from previous page)

798 cd $(PIO_LIBDIR); \
799 $(CMAKE_ENV_VARS) cmake $(CMAKE_OPTS) $(PIO_SRC_DIR)

10.2 buildlib.pio

A python script that may be capable of building pio.

30 Chapter 10. Parallel I/O

CHAPTER

ELEVEN

OVERVIEW

Important: The CAM Reference Manual is more comprehensive than the current CESM2.X documentation. It even
says, “This manual is intended for anyone who plans to get their hands dirty modifying CAM code.”

For example, this CESM1.2 Physics Driver page in the reference manual doesn’t seem to have an analog in the
CESM2.X documentation.

11.1 Nomenclature

CAM distinguishes between Dynamical cores and Physics packages. State variables are updated first by the dynamics
and then by the physics. Both the dynamical cores and the physics packages are implemented in a modular fashion and
plug into the model infrastructure using an interface.

11.1.1 Dynamical cores

Dynamical cores are numerical methods implemented on specific model grids that simulate the large scale atmospheric
flow. CAM supports several dynamical cores including the:

• EUL (Eulerian spectral-transform)

• SLD (semi-Lagrangian spectral-transform)

• FV (finite-volume)

• SE (spectral-elements)

11.1.2 Physics packages

Physics packages implement parameterized physical processes within a single column of the model grid. This func-
tionality is often called a vertical solver within the space weather community.

Kalnay et al. (1989)1 describe eleven rules to ensure physics package interoperability. Packages should only be respon-
sible for performing a calculation upon either a single column or a limited section of the model’s state. Other aspects
of model integration such as communication, parallelization, input and output are handled by the support infrastructure
within the model.

1 Kalnay, E., M. Kanamitsu, J. Pfaendtner, J. Sela, M. Suarez, J. Stackpole, J. Tuccillo, L. Umscheid, and D. Williamson., 1989: Rules for Inter-
change of Physical Parameterizations. Bulletin of the American Meteorological Society, 70, 620–622, https://journals.ametsoc.org/view/journals/
bams/70/6/1520-0477_1989_070_0620_rfiopp_2_0_co_2.xml.

31

https://www.cesm.ucar.edu/models/cesm1.2/cam/docs/rm5_3/rm.html
https://ncar.github.io/CAM/doc/build/html/index.html
https://www.cesm.ucar.edu/models/cesm1.2/cam/docs/rm5_3/ch04.html
https://www.cesm.ucar.edu/events/wg-meetings/2017/presentations/plenary/lauritzen.pdf
https://journals.ametsoc.org/view/journals/bams/70/6/1520-0477_1989_070_0620_rfiopp_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/bams/70/6/1520-0477_1989_070_0620_rfiopp_2_0_co_2.xml

Aether Documentation, Release 0.0.1

These standards allow for modularity and were developed in response to the difficulty of inserting and comparing
physics schemes into a given model.

11.2 Coding standards

CAM doesn’t have a strict set of coding standards because much of its source code was contributed by the community.
However, the UCAR wiki has a draft of coding standards for CAM. The document nodes that most of the code is
preprocessed with Fortran preprocessor, fpp, which is not officially a part of the Fortran language standard.

11.3 Directory structure

This collection contains pages corresponding to each of the subdirectories in cesm/components/cam/src/ that de-
scribes what each of the subdirectories contains.

• advection

• atmos_phys

• chemistry

• control

• cpl

• dynamics

• ionosphere

• Overview

• physics

• unit_drivers

• utils

11.4 References

32 Chapter 11. Overview

https://wiki.ucar.edu/display/ccsm/Draft+of+Coding+Standards+for+CAM

CHAPTER

TWELVE

ADVECTION

Contains a single subdirectory slt, which stands for “Semi-Lagrangian Transport advection” that has many files in it
containing subroutines.

• bandij.F90 contains a single suroutine: “Calculate longitude and latitude indices that identify the intervals on
the extended grid that contain the departure points.”

• basdy.F90 Compute weights for the calculation of derivative estimates at the two center points of the four point
stencil for each interval in the unequally spaced latitude grid. Estimates are from differentiating a Lagrange cubic
polynomial through the four point stencil.

• basdz.F90 Compute weights for the calculation of derivative estimates at two center points of the four point
stencil for each interval in the unequally spaced vertical grid (as defined by the array sig).

• basiy.F90 Compute weights used in Lagrange cubic polynomial interpolation in the central interval of a four
point stencil. Done for each interval in the unequally spaced latitude grid.

• difcor.F90 Add correction term to t and q horizontal diffusions and determine the implied heating rate due to
momentum diffusion.

• engy_tdif.F90 Calculate contribution of current latitude to del-T integral.

• engy_te.F90 Calculate contribution of current latitude to total energy.

• extx.F90 Copy data to the longitude extensions of the extended array.

• extys.F90 Fill latitude extensions of a scalar extended array and copy data to the longitude extensions of the
extended array.

• extyv.F90 Fill latitude extensions of a vector component extended array.

• flxint.F90 Calculate contribution of current latitude to energy flux integral.

• grdxy.F90 Define the “extended” grid used in the semi-Lagrangian transport scheme.

• hadvtest.h Looks like a short file that just has references to three functions: usave, vsave, pssave in it.

• hordif1.F90 Horizontal diffusion of z,d,t,q.

• kdpfnd.F90 Determine vertical departure point indices that point into a grid containing the full or half sigma
levels.

• lcbas.F90 Evaluate the partial Lagrangian cubic basis functions for the grid points rather than grid values.

• lcdbas.F90Calculate weights used to evaluate derivative estimates at the inner grid points of a four point stencil
based on Lagrange cubic polynomial through four unequally spaced points.

• omcalc.F90 Calculate vertical pressure velocity (omga = dp/dt).

• pdelb0.F90 Compute the pressure intervals between the interfaces for the “B” portion of the hybrid grid only.

33

Aether Documentation, Release 0.0.1

• phcs.F90 Compute associated Legendre functions of the first kind of order m and degree n, and the associated
derivatives for arg x1.

• plevs0.F90 Define the pressures of the interfaces and midpoints from the coordinate definitions and the surface
pressure.

• qmassa.F90 Calculate contribution of current latitude to mass of constituents being advected by slt.

• qmassd.F90 Compute comtribution of current latitude to global integral of q2*|q2 - q1|*eta.

• reordp.F90 Renormalize associated Legendre polynomials and their derivatives.

• scm0.F90 Apply SCM0 limiter to derivative estimates.

• xqmass.F90 Compute comtribution of current latitude to global integrals necessary to compute the fixer for the
non-water constituents.

34 Chapter 12. advection

CHAPTER

THIRTEEN

ATMOS_PHYS

This subdirectory is curiously not present in other versions of the repository.

• LICENSE.txt

• README.md

• kessler The Kessler warm rain scheme was first included to support the Dynamical Core.

– kessler.F90 Implements the Kessler (1969) microphysics parameterization as described by Soong and
Ogura (1973) and Klemp and Wilhelmson (1978).

– kessler.meta

– kessler_update.F90

– kessler_update.meta

• suite_cam6.xml

• suite_cam6_silhs.xml

• suite_kessler.xml

• utilities

– geopotential_t.F90Compute the geopotential height (above the surface) at the midpoints and interfaces
using the input temperatures and pressures.

– geopotential_t.meta

– state_converters.F90 Contains various converters such as a conversion between temperature and po-
tential temperature, dry pressure to dry air density, wet and dry, etc.

– state_converters.meta

35

Aether Documentation, Release 0.0.1

36 Chapter 13. atmos_phys

CHAPTER

FOURTEEN

CHEMISTRY

Note: I’m skipping extensive documentation of this subdirectory since it isn’t immediately relevant to the project. My
hunch is that pp* stands for physics package, but I’m not sure if that’s true.

Contains many subdirectories for computing chemistry:

• aerosol

• bulk_aero

• modal_aero

• mozart

• pp_none

• pp_terminator

• pp_trop_mam3

• pp_trop_mam4

• pp_trop_mam7

• pp_trop_mozart

• pp_trop_strat_mam4_ts2

• pp_trop_strat_mam4_vbs

• pp_trop_strat_mam4_vbsext

• pp_waccm_ma

• pp_waccm_ma_mam4

• pp_waccm_ma_sulfur

• pp_waccm_mad

• pp_waccm_mad_mam4

• pp_waccm_sc

• pp_waccm_sc_mam4

• pp_waccm_tsmlt_mam4

• utils

37

Aether Documentation, Release 0.0.1

38 Chapter 14. chemistry

CHAPTER

FIFTEEN

CONTROL

• cam_comp.F90

• cam_control_mod.F90

• cam_history.F90

• cam_history_buffers.F90

• cam_history_support.F90

• cam_initfiles.F90

• cam_instance.F90

• cam_logfile.F90

• cam_restart.F90

• cam_snapshot.F90

• camsrfexch.F90

• filenames.F90

• history_defaults.F90

• history_scam.F90

• ncdio_atm.F90

• runtime_opts.F90

• sat_hist.F90

• scamMod.F90

39

Aether Documentation, Release 0.0.1

40 Chapter 15. control

CHAPTER

SIXTEEN

CPL

Has two subdirectories:

Note: These source code files seem quite important. For example, the atm_comp_mct.F90 file contains a subroutine
named atm_init_mct.

• mct

– atm_comp_mct.F90 Contains a subroutine named atm_init_mct.

– atm_import_export.F90 Contains atm_export, which copies from component arrays into chunk array
data structure. Rearrange data from chunk structure into lat-lon buffer and subsequently create attribute
vector.

– cam_cpl_indices.F90 Contains cam_cpl_indices_set which queries booleans to determine whether
certain fileds are passed by the coupler.

• nuopc

– atm_comp_nuopc.F90 Contains the NUOPC cap for CAM.

– atm_import_export.F90 Contains import and export fields.

– atm_shr_methods.F90 Contains shared methods.

41

Aether Documentation, Release 0.0.1

42 Chapter 16. cpl

CHAPTER

SEVENTEEN

DYNAMICS

Has all of the different dynamics schemes:

• eul

• fv

• fv3

• se

• tests

43

Aether Documentation, Release 0.0.1

44 Chapter 17. dynamics

CHAPTER

EIGHTEEN

IONOSPHERE

This is where WACCMX seems to be stored:

• epotential_params.F90``

• ionosphere_interface.F90``

• waccmx

– amie.F90

– dpie_coupling.F90

– edyn_esmf.F90

– edyn_geogrid.F90

– edyn_init.F90

– edyn_maggrid.F90

– edyn_mpi.F90

– edyn_mud.F90

– edyn_mudcom.F90

– edyn_mudmod.F90

– edyn_muh2cr.F90

– edyn_params.F90

– edyn_solve.F90

– edynamo.F90

– filter.F90

– getapex.F90

– heelis.F90

– ionosphere_interface.F90

– oplus.F90

– rgrd_mod.F90

– savefield_waccm.F90

– wei05sc.F90

45

Aether Documentation, Release 0.0.1

46 Chapter 18. ionosphere

CHAPTER

NINETEEN

PHYSICS

• cam

– physpkg.F90 provides an interface to the various physics packages included with cam. My hunch is that
the references to pp in the cesm/components/cam/src/chemsitry stands for physics package but I’m
just not quite sure whether this is true.

• camrt

• carma

• cosp2

• rrtmg

• simple

• spcam

• waccm

• waccmx

47

Aether Documentation, Release 0.0.1

48 Chapter 19. physics

CHAPTER

TWENTY

UNIT_DRIVERS

• aur

• drv_input_data.F90

• offline_driver.F90

• rad

• stub

49

Aether Documentation, Release 0.0.1

50 Chapter 20. unit_drivers

CHAPTER

TWENTYONE

UTILS

Important: physconst.F90 contains many of the physical constants that are used throughout the model.

• CMakeLists.txt

• bnddyi.F90

• buffer.F90.in

• cam_abortutils.F90

• cam_grid_support.F90

• cam_map_utils.F90

• cam_pio_utils.F90

• ccpp_kinds.F90

• coords_1d.F90

• datetime.F90

• dtypes.h

• error_messages.F90

• fft99.F90

• gauaw_mod.F90

• gmean_mod.F90

• hycoef.F90

• infnan.F90

• interpolate_data.F90

• intp_util.F90

• ioFileMod.F90

• linear_1d_operators.F90

• marsaglia.F90

• mpishorthand.F

• namelist_utils.F90

• orbit.F90

51

Aether Documentation, Release 0.0.1

• physconst.F90

• pilgrim

• quicksort.F90

• sgexx.F90

• spmd_utils.F90

• srchutil.F90

• srf_field_check.F90

• std_atm_profile.F90

• string_utils.F90

• time_manager.F90

• units.F90

• vrtmap.F90

• wrap_mpi.F90

• wrap_nf.F90

• xpavg_mod.F90

52 Chapter 21. utils

CHAPTER

TWENTYTWO

WACCM-X

The Community Atmosphere Model (CAM) extends throughout Earth’s troposphere. The Whole Atmosphere Commu-
nity Climate Model (WACCM) extends CAM further into the stratosphere and thermosphere. The Whole Atmosphere
Community Climate Model - eXtended (WACCM-X) is an extension of WACCM that extends upward to ~500 km
altitude and includes the ionosphere.

The overview paper of WACCM-X 2.0 (Liu et al. 20181) uses the finite volume dynamical core. The article also
mentions that WACCM-X is based on CAM-4 physics and uses the f19 atmospheric grid which has a horizontal
resolution of 1.9° in latitude and 2.5° in longitude.

Important: It may not be possible to compile WACCM-X with the spectral element dycore. The safest thing to do
would be to build a test case of the model with a finite volume dycore first.

1 Liu, H.-L., and Coauthors, 2018: Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and
Ionosphere Extension (WACCM-X 2.0). Journal of Advances in Modeling Earth Systems, 10, 381–402, https://doi.org/10.1002/2017MS001232.

53

https://www2.hao.ucar.edu/sites/default/files/2021-12/WaccmxOverview.pdf
https://www2.hao.ucar.edu/sites/default/files/2021-12/WaccmxOverview.pdf
https://doi.org/10.1002/2017MS001232

Aether Documentation, Release 0.0.1

54 Chapter 22. WACCM-X

CHAPTER

TWENTYTHREE

TUTORIAL

The WACCM-X tutorial demonstrates how to build a WACCM-X case.

cd /glade/work/johnsonb/cesm2_2_0/cime/scripts
./create_newcase --res f19_f19 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.f19_f19.001 --mach cheyenne --project $DARES_PROJECT --run-unsupported
cd /glade/work/johnsonb/cases/f.e20.FXHIST.f19_f19.001

Note: Liu et al. (2018) note that the time steps for WACCM-X and CAM are significantly different. For example,
CAM’s time step for the f19_f19 is 30 minutes, while it is 5 minutes for WACCM-X. Lauritzen et al. (2017)2 note
that the timestep for the roughly ~2° spectral element grid, ne16np4, is also 30 minutes.

2 Lauritzen, P. H., and Coauthors, 2018: NCAR Release of CAM-SE in CESM2.0: A Reformulation of the Spectral Element Dynamical Core in
Dry-Mass Vertical Coordinates With Comprehensive Treatment of Condensates and Energy. Journal of Advances in Modeling Earth Systems, 10,
1537–1570, https://doi.org/10.1029/2017MS001257.

55

https://www2.hao.ucar.edu/sites/default/files/2021-12/WACCM-Xtutorial.pdf
https://doi.org/10.1029/2017MS001257

Aether Documentation, Release 0.0.1

56 Chapter 23. Tutorial

CHAPTER

TWENTYFOUR

FIRST ATTEMPT AT BUILDING FHISTX FOR THE NE16 GRID

cd /glade/work/johnsonb/cesm2_2_0/cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.001 --mach cheyenne --project $DARES_PROJECT --run-unsupported
cd /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.001
./case.setup
./case.build

This results in the following error:

Error: ERROR: Command: ‘/glade/work/johnsonb/cesm2_2_0/components/cam/bld/configure -s -fc_type intel -
dyn se -hgrid ne16np4 -cpl mct -usr_src /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.001/SourceMods/src.cam
-spmd -nosmp -ocn docn -phys cam6 -waccmx -ionosphere wxie -chem waccm_ma_mam4’
failed with error ‘ERROR: Ionosphere is only available for FV dycore’ from dir
‘/glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.001/Buildconf/camconf’

This limitation in capability is also reflected in ACOM’s geospace roadmap.

57

https://acomstaff.acom.ucar.edu/singletrack/Documents/Geospace_Roadmap.pdf

Aether Documentation, Release 0.0.1

58 Chapter 24. First attempt at building FHISTX for the ne16 grid

CHAPTER

TWENTYFIVE

SECOND ATTEMPT AT BUILDING FHISTX FOR THE NE16 GRID

This CAM pull request suggests that the limitation in the ionosphere was fixed for a more-recent version of CAM for
CESM2.3. Checkout a newer release of CESM and try again.

cd /glade/work/johnsonb
git clone https://github.com/ESCOMP/CESM cesm2_3_0
cd cesm2_3_0
git checkout cesm2_3_beta01
./manage_externals/checkout_externals
[...]
cd cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.002 --mach cheyenne --project $DARES_PROJECT --run-unsupported
cd /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.002
./case.setup

Error: ERROR: Ionosphere is only available for FV dycore

Try again to checkout a newer tag.

cd /glade/work/johnsonb
rm -rf cesm2_3_0
git clone https://github.com/ESCOMP/CESM cesm2_3_0
cd cesm2_3_0
git checkout cesm2_3_beta09
./manage_externals/checkout_externals
[...]
cd cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.003 --mach cheyenne --project $DARES_PROJECT --run-unsupported

Error: SyntaxError: invalid syntax

Try again by checking out a slightly older tag.

git clone https://github.com/ESCOMP/CESM cesm2_3_0
cd cesm2_3_0
git checkout cesm2_3_beta09

(continues on next page)

59

https://github.com/ESCOMP/CAM/pull/264

Aether Documentation, Release 0.0.1

(continued from previous page)

./manage_externals/checkout_externals
[...]
cd cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.004 --mach cheyenne --project $DARES_PROJECT --run-unsupported
ERROR: Python 3, minor version 6 is required, you have 3.4
source activate py37
cd /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.004
./case.setup
./case.build

Error: ERROR: Command /glade/work/johnsonb/cesm2_3_0/components/clm/bld/build-namelist failed rc=255
out= err=ERROR : CLM build-namelist::CLMBuildNamelist::add_default() : No default value found for flan-
duse_timeseries. Are defaults provided for this resolution and land mask?

Well this is progress.

Doing a triage of which beta releases of cesm2_3_0 provide the most plausible path toward compilation.

60 Chapter 25. Second attempt at building FHISTX for the ne16 grid

CHAPTER

TWENTYSIX

FAILED ATTEMPTS UNTIL SUCCESS WITH THE NE30 GRID

This might be simple to fix. According to this CGD BB post, It could merely be that there is a missing timeseries file
that CLM needs.

Create a stock FHIST case and see how this is specified.

cd /glade/work/johnsonb/cesm2_1_3/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e213.FHIST.f09_g17.001'
./create_newcase --res f09_g17 --compset FHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./preview_namelists
grep -Rl flanduse_timeseries ./
./Buildconf/clmconf/lnd_in
./Buildconf/clm.input_data_list
./CaseDocs/lnd_in

There is no lnd_in file for the ne16_g17 cases. I attempted to set up a case with the ne16_g17 grid and the FHIST
compset (instead of FXHIST) and ran into the same error. However, it was possible to build the namelist for a case with
the ne30_g17 grid and the FHIST compset.

cd /glade/work/johnsonb/cesm2_2_0/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e220.FHIST.ne30_g17.001'
./create_newcase --res ne30_g17 --compset FHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./preview_namelists
grep -Rl flanduse_timeseries ./
./Buildconf/clmconf/lnd_in
./Buildconf/clm.input_data_list
./CaseDocs/lnd_in

Important: The key here to realize is that most of the spectral element dycore work is done on the ne30 grid (ap-
proximately 1° horizontal resolution) while most of the WACCM-X work is done on the f19 grid (approximately 2°
horizontal resolution and the finite volume analog of the ne16 spectral element grid). The question now is: can a case
be built using the ne30_g17 grid and the FXHIST compset?

61

https://bb.cgd.ucar.edu/cesm/threads/preview_namelist-error-clm-build-namelist-clmbuildnamelist-add_default-no-default-value-found-for-fsurdat.6434/

Aether Documentation, Release 0.0.1

cd /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e230b9.FXHIST.ne30_g17.001'
./create_newcase --res ne30_g17 --compset FXHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./preview_namelists
grep -Rl flanduse_timeseries ./
./Buildconf/clmconf/lnd_in
./Buildconf/clm.input_data_list
./CaseDocs/lnd_in
./case.build
MODEL BUILD HAS FINISHED SUCCESSFULLY

Note: Hooray! However, I don’t know where the preprocessed source files are contained.

There is a list of the source files in /glade/scratch/johnsonb/f.e230b9.FXHIST.ne30_g17.001/bld/atm/
obj/Srcfiles but I don’t know where the files actually are.

For example one of the files is cam_history.F90:

cd /glade/scratch/johnsonb/f.e230b9.FXHIST.ne30_g17.001
find . -name cam_history.F90
[Returns nothing]
cd /glade/work/johnsonb/cases/f.e230b9.FXHIST.ne30_g17.001
find . -name cam_history.F90
[Returns nothing]

62 Chapter 26. Failed attempts until success with the ne30 grid

CHAPTER

TWENTYSEVEN

GETTING THE COMPILER TO SAVE THE POST-PREPROCESSED
FILES

While there is a directory for build_scripts in cime/src/build_scripts, each of the scripts in that subdirectory
import CIME.buildlib which is in cime/scripts/lib/CIME/buildlib.py.

27.1 buildlib.py

This python script contains three functions: parse_input, build_cime_component_lib and run_gmake. The last
function actually invokes gmake to build a component executable. The tractable path forward seems to be to see if we
can get these functions to preprocess the files and save them.

Editing buildlib.py to print the commands within run_gmake:

vim /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/scripts/lib/CIME/buildlib.py
102 print('BKJ inserted this: ', cmd)
103 stat, out, err = run_cmd(cmd, combine_output=True)

63

Aether Documentation, Release 0.0.1

64 Chapter 27. Getting the compiler to save the post-preprocessed files

CHAPTER

TWENTYEIGHT

APPENDING -E TO THE COMPILER FLAGS

Helen’s suggestion at the 2022-08-30 standup was to append -E as a compiler flag in /glade/work/johnsonb/git/
cesm2_3_0_beta09/cime/config/cesm/machines/config_compilers.xml.

903 <compiler MACH="cheyenne" COMPILER="intel">
904 <CFLAGS>
905 <append> -qopt-report -xCORE_AVX2 -no-fma -E</append>
906 </CFLAGS>
907 <FFLAGS>
908 <append> -qopt-report -xCORE_AVX2 -no-fma -E</append>
909 </FFLAGS>
[...]
917 </compiler>

Tried this both with cesm2_3_0_beta09 and cesm2_3_0_beta02 and it doesn’t work:

Error: ERROR: /glade/work/johnsonb/git/cesm2_3_0_beta02/cime/src/build_scripts/buildlib.gptl FAILED, cat
/glade/scratch/johnsonb/f.e230b2.FXHIST.ne30_g17.001/bld/gptl.bldlog.220831-140809

65

Aether Documentation, Release 0.0.1

66 Chapter 28. Appending -E to the compiler flags

CHAPTER

TWENTYNINE

APPENDING -SAVE-TEMPS TO THE COMPILER FLAGS

This page within the iFort guide suggests that the -save-temps compile flag will save the preprocessed files.

vim /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/config/cesm/machines/config_compilers.
→˓xml

903 <compiler MACH="cheyenne" COMPILER="intel">
904 <CFLAGS>
905 <append> -qopt-report -xCORE_AVX2 -no-fma -save-temps</append>
906 </CFLAGS>
907 <FFLAGS>
908 <append> -qopt-report -xCORE_AVX2 -no-fma -save-temps</append>
909 </FFLAGS>
[...]
917 </compiler>

Then build the case:

cd /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e230b9.FXHIST.ne30_g17.004'
./create_newcase --res ne30_g17 --compset FXHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./case.build
[...]
MODEL BUILD HAS FINISHED SUCCESSFULLY
cd /glade/scratch/johnsonb/f.e230b9.FXHIST.ne30_g17.004/bld/atm/obj
ls *.i90
This shows all of the post-preprocessed files.

67

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/miscellaneous-options/save-temps-qsave-temps.html

Aether Documentation, Release 0.0.1

68 Chapter 29. Appending -save-temps to the compiler flags

CHAPTER

THIRTY

REFERENCES

69

Aether Documentation, Release 0.0.1

70 Chapter 30. References

CHAPTER

THIRTYONE

WACCM-X

The Community Atmosphere Model (CAM) extends throughout Earth’s troposphere. The Whole Atmosphere Commu-
nity Climate Model (WACCM) extends CAM further into the stratosphere and thermosphere. The Whole Atmosphere
Community Climate Model - eXtended (WACCM-X) is an extension of WACCM that extends upward to ~500 km
altitude and includes the ionosphere.

The overview paper of WACCM-X 2.0 (Liu et al. 20181) uses the finite volume dynamical core. The article also
mentions that WACCM-X is based on CAM-4 physics and uses the f19 atmospheric grid which has a horizontal
resolution of 1.9° in latitude and 2.5° in longitude.

Important: It may not be possible to compile WACCM-X with the spectral element dycore. The safest thing to do
would be to build a test case of the model with a finite volume dycore first.

1 Liu, H.-L., and Coauthors, 2018: Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and
Ionosphere Extension (WACCM-X 2.0). Journal of Advances in Modeling Earth Systems, 10, 381–402, https://doi.org/10.1002/2017MS001232.

71

https://www2.hao.ucar.edu/sites/default/files/2021-12/WaccmxOverview.pdf
https://www2.hao.ucar.edu/sites/default/files/2021-12/WaccmxOverview.pdf
https://doi.org/10.1002/2017MS001232

Aether Documentation, Release 0.0.1

72 Chapter 31. WACCM-X

CHAPTER

THIRTYTWO

TUTORIAL

The WACCM-X tutorial demonstrates how to build a WACCM-X case.

cd /glade/work/johnsonb/cesm2_2_0/cime/scripts
./create_newcase --res f19_f19 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.f19_f19.001 --mach cheyenne --project $DARES_PROJECT --run-unsupported
cd /glade/work/johnsonb/cases/f.e20.FXHIST.f19_f19.001

Note: Liu et al. (2018) note that the time steps for WACCM-X and CAM are significantly different. For example,
CAM’s time step for the f19_f19 is 30 minutes, while it is 5 minutes for WACCM-X. Lauritzen et al. (2017)2 note
that the timestep for the roughly ~2° spectral element grid, ne16np4, is also 30 minutes.

2 Lauritzen, P. H., and Coauthors, 2018: NCAR Release of CAM-SE in CESM2.0: A Reformulation of the Spectral Element Dynamical Core in
Dry-Mass Vertical Coordinates With Comprehensive Treatment of Condensates and Energy. Journal of Advances in Modeling Earth Systems, 10,
1537–1570, https://doi.org/10.1029/2017MS001257.

73

https://www2.hao.ucar.edu/sites/default/files/2021-12/WACCM-Xtutorial.pdf
https://doi.org/10.1029/2017MS001257

Aether Documentation, Release 0.0.1

74 Chapter 32. Tutorial

CHAPTER

THIRTYTHREE

FIRST ATTEMPT AT BUILDING FHISTX FOR THE NE16 GRID

cd /glade/work/johnsonb/cesm2_2_0/cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.001 --mach cheyenne --project $DARES_PROJECT --run-unsupported
cd /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.001
./case.setup
./case.build

This results in the following error:

Error: ERROR: Command: ‘/glade/work/johnsonb/cesm2_2_0/components/cam/bld/configure -s -fc_type intel -
dyn se -hgrid ne16np4 -cpl mct -usr_src /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.001/SourceMods/src.cam
-spmd -nosmp -ocn docn -phys cam6 -waccmx -ionosphere wxie -chem waccm_ma_mam4’
failed with error ‘ERROR: Ionosphere is only available for FV dycore’ from dir
‘/glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.001/Buildconf/camconf’

This limitation in capability is also reflected in ACOM’s geospace roadmap.

75

https://acomstaff.acom.ucar.edu/singletrack/Documents/Geospace_Roadmap.pdf

Aether Documentation, Release 0.0.1

76 Chapter 33. First attempt at building FHISTX for the ne16 grid

CHAPTER

THIRTYFOUR

SECOND ATTEMPT AT BUILDING FHISTX FOR THE NE16 GRID

This CAM pull request suggests that the limitation in the ionosphere was fixed for a more-recent version of CAM for
CESM2.3. Checkout a newer release of CESM and try again.

cd /glade/work/johnsonb
git clone https://github.com/ESCOMP/CESM cesm2_3_0
cd cesm2_3_0
git checkout cesm2_3_beta01
./manage_externals/checkout_externals
[...]
cd cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.002 --mach cheyenne --project $DARES_PROJECT --run-unsupported
cd /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.002
./case.setup

Error: ERROR: Ionosphere is only available for FV dycore

Try again to checkout a newer tag.

cd /glade/work/johnsonb
rm -rf cesm2_3_0
git clone https://github.com/ESCOMP/CESM cesm2_3_0
cd cesm2_3_0
git checkout cesm2_3_beta09
./manage_externals/checkout_externals
[...]
cd cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.003 --mach cheyenne --project $DARES_PROJECT --run-unsupported

Error: SyntaxError: invalid syntax

Try again by checking out a slightly older tag.

git clone https://github.com/ESCOMP/CESM cesm2_3_0
cd cesm2_3_0
git checkout cesm2_3_beta09

(continues on next page)

77

https://github.com/ESCOMP/CAM/pull/264

Aether Documentation, Release 0.0.1

(continued from previous page)

./manage_externals/checkout_externals
[...]
cd cime/scripts
./create_newcase --res ne16_g17 --compset FXHIST --case /glade/work/johnsonb/cases/f.e20.
→˓FXHIST.ne16_g17.004 --mach cheyenne --project $DARES_PROJECT --run-unsupported
ERROR: Python 3, minor version 6 is required, you have 3.4
source activate py37
cd /glade/work/johnsonb/cases/f.e20.FXHIST.ne16_g17.004
./case.setup
./case.build

Error: ERROR: Command /glade/work/johnsonb/cesm2_3_0/components/clm/bld/build-namelist failed rc=255
out= err=ERROR : CLM build-namelist::CLMBuildNamelist::add_default() : No default value found for flan-
duse_timeseries. Are defaults provided for this resolution and land mask?

Well this is progress.

Doing a triage of which beta releases of cesm2_3_0 provide the most plausible path toward compilation.

78 Chapter 34. Second attempt at building FHISTX for the ne16 grid

CHAPTER

THIRTYFIVE

FAILED ATTEMPTS UNTIL SUCCESS WITH THE NE30 GRID

This might be simple to fix. According to this CGD BB post, It could merely be that there is a missing timeseries file
that CLM needs.

Create a stock FHIST case and see how this is specified.

cd /glade/work/johnsonb/cesm2_1_3/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e213.FHIST.f09_g17.001'
./create_newcase --res f09_g17 --compset FHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./preview_namelists
grep -Rl flanduse_timeseries ./
./Buildconf/clmconf/lnd_in
./Buildconf/clm.input_data_list
./CaseDocs/lnd_in

There is no lnd_in file for the ne16_g17 cases. I attempted to set up a case with the ne16_g17 grid and the FHIST
compset (instead of FXHIST) and ran into the same error. However, it was possible to build the namelist for a case with
the ne30_g17 grid and the FHIST compset.

cd /glade/work/johnsonb/cesm2_2_0/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e220.FHIST.ne30_g17.001'
./create_newcase --res ne30_g17 --compset FHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./preview_namelists
grep -Rl flanduse_timeseries ./
./Buildconf/clmconf/lnd_in
./Buildconf/clm.input_data_list
./CaseDocs/lnd_in

Important: The key here to realize is that most of the spectral element dycore work is done on the ne30 grid (ap-
proximately 1° horizontal resolution) while most of the WACCM-X work is done on the f19 grid (approximately 2°
horizontal resolution and the finite volume analog of the ne16 spectral element grid). The question now is: can a case
be built using the ne30_g17 grid and the FXHIST compset?

79

https://bb.cgd.ucar.edu/cesm/threads/preview_namelist-error-clm-build-namelist-clmbuildnamelist-add_default-no-default-value-found-for-fsurdat.6434/

Aether Documentation, Release 0.0.1

cd /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e230b9.FXHIST.ne30_g17.001'
./create_newcase --res ne30_g17 --compset FXHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./preview_namelists
grep -Rl flanduse_timeseries ./
./Buildconf/clmconf/lnd_in
./Buildconf/clm.input_data_list
./CaseDocs/lnd_in
./case.build
MODEL BUILD HAS FINISHED SUCCESSFULLY

Note: Hooray! However, I don’t know where the preprocessed source files are contained.

There is a list of the source files in /glade/scratch/johnsonb/f.e230b9.FXHIST.ne30_g17.001/bld/atm/
obj/Srcfiles but I don’t know where the files actually are.

For example one of the files is cam_history.F90:

cd /glade/scratch/johnsonb/f.e230b9.FXHIST.ne30_g17.001
find . -name cam_history.F90
[Returns nothing]
cd /glade/work/johnsonb/cases/f.e230b9.FXHIST.ne30_g17.001
find . -name cam_history.F90
[Returns nothing]

80 Chapter 35. Failed attempts until success with the ne30 grid

CHAPTER

THIRTYSIX

GETTING THE COMPILER TO SAVE THE POST-PREPROCESSED
FILES

While there is a directory for build_scripts in cime/src/build_scripts, each of the scripts in that subdirectory
import CIME.buildlib which is in cime/scripts/lib/CIME/buildlib.py.

36.1 buildlib.py

This python script contains three functions: parse_input, build_cime_component_lib and run_gmake. The last
function actually invokes gmake to build a component executable. The tractable path forward seems to be to see if we
can get these functions to preprocess the files and save them.

Editing buildlib.py to print the commands within run_gmake:

vim /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/scripts/lib/CIME/buildlib.py
102 print('BKJ inserted this: ', cmd)
103 stat, out, err = run_cmd(cmd, combine_output=True)

81

Aether Documentation, Release 0.0.1

82 Chapter 36. Getting the compiler to save the post-preprocessed files

CHAPTER

THIRTYSEVEN

APPENDING -E TO THE COMPILER FLAGS

Helen’s suggestion at the 2022-08-30 standup was to append -E as a compiler flag in /glade/work/johnsonb/git/
cesm2_3_0_beta09/cime/config/cesm/machines/config_compilers.xml.

903 <compiler MACH="cheyenne" COMPILER="intel">
904 <CFLAGS>
905 <append> -qopt-report -xCORE_AVX2 -no-fma -E</append>
906 </CFLAGS>
907 <FFLAGS>
908 <append> -qopt-report -xCORE_AVX2 -no-fma -E</append>
909 </FFLAGS>
[...]
917 </compiler>

Tried this both with cesm2_3_0_beta09 and cesm2_3_0_beta02 and it doesn’t work:

Error: ERROR: /glade/work/johnsonb/git/cesm2_3_0_beta02/cime/src/build_scripts/buildlib.gptl FAILED, cat
/glade/scratch/johnsonb/f.e230b2.FXHIST.ne30_g17.001/bld/gptl.bldlog.220831-140809

83

Aether Documentation, Release 0.0.1

84 Chapter 37. Appending -E to the compiler flags

CHAPTER

THIRTYEIGHT

APPENDING -SAVE-TEMPS TO THE COMPILER FLAGS

This page within the iFort guide suggests that the -save-temps compile flag will save the preprocessed files.

vim /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/config/cesm/machines/config_compilers.
→˓xml

903 <compiler MACH="cheyenne" COMPILER="intel">
904 <CFLAGS>
905 <append> -qopt-report -xCORE_AVX2 -no-fma -save-temps</append>
906 </CFLAGS>
907 <FFLAGS>
908 <append> -qopt-report -xCORE_AVX2 -no-fma -save-temps</append>
909 </FFLAGS>
[...]
917 </compiler>

Then build the case:

cd /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/scripts
export CASEROOT='/glade/work/johnsonb/cases/f.e230b9.FXHIST.ne30_g17.004'
./create_newcase --res ne30_g17 --compset FXHIST --case $CASEROOT --mach cheyenne --
→˓project $DARES_PROJECT --run-unsupported
cd $CASEROOT
./case.setup
./case.build
[...]
MODEL BUILD HAS FINISHED SUCCESSFULLY
cd /glade/scratch/johnsonb/f.e230b9.FXHIST.ne30_g17.004/bld/atm/obj
ls *.i90
This shows all of the post-preprocessed files.

85

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/miscellaneous-options/save-temps-qsave-temps.html

Aether Documentation, Release 0.0.1

86 Chapter 38. Appending -save-temps to the compiler flags

CHAPTER

THIRTYNINE

REFERENCES

87

Aether Documentation, Release 0.0.1

88 Chapter 39. References

CHAPTER

FORTY

COMPILING WITH MKMF

mkmf is a tool written in perl and developed at GFDL that takes raw FORTRAN source code, maps out the dependencies
and then creates a Makefile to enable compilation of the code.

mkmf already comes within the DART repository. It can be used in the following manner.

1. Run a script to stage the source code files that are intended to be compiled

2. Navigate to the DART build_templates where mkmf is located.

3. Export the location of the DART installation

4. Run mkmf

5. Use gmake to compile the code.

python ~/python_scripts/rename_i90_files.py
cd /glade/work/johnsonb/git/DART/build_templates/
export DART=/glade/work/johnsonb/git/DART
./mkmf pathnames /glade/scratch/johnsonb/mkmf_target
make

40.1 Errors encountered

40.1.1 seq_timemgr_mod.F90

This file gets preprocessed by setting the -E flag in config_compilers.xml but when it gets compiled by gmake, various
errors get thrown.

Error: seq_timemgr_mod.F90(1988): error #6634: The shape matching rules of actual arguments and dummy
arguments have been violated. call ESMF_ClockGetAlarmList(EClock, alarmListFlag, &

The unpreprocessed file has two versions of this ESMF_ClockGetAlarmList function that are selected by the prepro-
cessor:

vim /glade/work/johnsonb/git/cesm2_3_0_beta09/cime/src/drivers/mct/shr/seq_timemgr_mod.
→˓F90
[...]
1829 #ifdef USE_ESMF_LIB
1830 allocate(EAlarm_list(AlarmCount))
1831 call ESMF_ClockGetAlarmList(EClock, alarmListFlag=ESMF_ALARMLIST_ALL, &

(continues on next page)

89

https://extranet.gfdl.noaa.gov/~vb/mkmf.html

Aether Documentation, Release 0.0.1

(continued from previous page)

1832 alarmList=EAlarm_list, alarmCount=AlarmCount, rc=rc)
1833 #else
1834 call ESMF_ClockGetAlarmList(EClock, EAlarm_list, rc=rc)
1835 #endif

40.1.2 ESMF_FIELD

Error: /glade/work/johnsonb/git/cesm2_3_0_beta09/components/cam/src/ionosphere/waccmx/utils_mod.F90(5):
error #6580: Name in only-list does not exist or is not accessible. [ESMF_FIELD] use esmf ,only: ESMF_FIELD
—————————-^ compilation aborted for /glade/scratch/johnsonb/mkmf_target/utils_mod.f90 (code 1)

Comment out the use statement in the processed file:

vim /glade/scratch/johnsonb/mkmf_target/utils_mod.f90
! use esmf ,only: ESMF_FIELD

90 Chapter 40. Compiling with mkmf

CHAPTER

FORTYONE

LINKING TO ESMF

When CIME compiles CESM, it loads the esmf_libs module to link to during compilation.

Here is an excerpt from an example software_environment.txt from a successful CESM build:

vim /glade/work/johnsonb/cases/f.e230b9.FXHIST.ne30_g17.009/software_environment.txt
Currently Loaded Modules:
1) ncarenv/1.3 3) intel/19.1.1 5) mkl/2020.0.1 7) mpt/2.22 ␣
→˓ 9) pnetcdf/1.12.2
2) cmake/3.18.2 4) esmf_libs/8.2.0 6) esmf-8.1.1-ncdfio-mpt-O 8) netcdf-mpi/4.7.4 ␣
→˓10) ncarcompilers/0.5.0
[...]
ESMF_LIBDIR=/glade/p/cesmdata/cseg/PROGS/esmf/8.1.1/mpt/2.22/intel/19.1.1/lib/libO/Linux.
→˓intel.64.mpt.default

So when trying to compile this source code outside of CIME, I load the same libraries:

module purge
module load ncarenv/1.3 cmake intel/19.1.1 esmf_libs mkl
module use /glade/p/cesmdata/cseg/PROGS/modulefiles/esmfpkgs/intel/19.1.1/
module load esmf-8.1.1-ncdfio-mpt-O mpt/2.22 netcdf-mpi/4.7.4 pnetcdf/1.12.2␣
→˓ncarcompilers/0.5.0

In my mkmf.template which is here:

/glade/work/johnsonb/git/DART/build_templates/mkmf.template

I reference the same library and also include an additional directory which contains the module interface files,
-I$(ESMF)/mod/modO/Linux.intel.64.mpt.default:

ESMF = /glade/p/cesmdata/cseg/PROGS/esmf/8.1.1/mpt/2.22/intel/19.1.1
INCS = -I$(NETCDF)/include -I$(ESMF)/include -I$(ESMF)/mod/modO/Linux.intel.64.mpt.
→˓default
LIBS = -L$(NETCDF)/lib -lnetcdff -lnetcdf -L$(ESMF)/lib/libO/Linux.intel.64.mpt.default -
→˓lesmf

The file that throws a compile-time error is edyn_esmf.f90. There are a few precursor steps to running make:

python /glade/u/home/johnsonb/python_scripts/rename_i90_files.py
cd /glade/work/johnsonb/git/DART/build_templates/
export DART=/glade/work/johnsonb/git/DART
./mkmf pathnames /glade/scratch/johnsonb/mkmf_target
make edyn_esmf.o

91

Aether Documentation, Release 0.0.1

92 Chapter 41. Linking to ESMF

CHAPTER

FORTYTWO

DART

The Data Assimilation Research Testbed (DART) implements many ensemble assimilation methodologies including
the Ensemble Kalman Filter (Evensen, 2003)1 and the Ensemble Adjustment Kalman Filter (Anderson, 2001).2

Forward operators required to assimilate observations perform line-of-sight integration, volume integration, interpola-
tion, and other common techniques.

These forward operators are optimized given the grid structures and the parallelization scheme.

42.1 References

1 Evensen, G., 2003: The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367,
doi:10.1007/s10236-003-0036-9

2 Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Monthly Weather Review, 129, 2884-2903,
doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2

93

https://doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1175/1520-0493(2001)129%3C2884%3AAEAKFF%3E2.0.CO%3B2

Aether Documentation, Release 0.0.1

94 Chapter 42. DART

CHAPTER

FORTYTHREE

FILTERING THEORY

Assume a dynamical system that is governed by a stochastic difference equation:

𝑑𝑥𝑡 = 𝑓(𝑥𝑡, 𝑡) +𝐺(𝑥𝑡, 𝑡)𝑑𝛽𝑡

for all times, 𝑡 ≥ 0. Observations occur at discrete times:

𝑦𝑘 = ℎ(𝑥𝑘, 𝑡𝑘) + 𝜈𝑘

where 𝑘 = 1, 2, ...; and 𝑡𝑘+1 > 𝑡𝑘 ≥ 𝑡0.

The observational error is white in time and is Gaussian (this latter assumption is not essential).

𝜈𝑘 → 𝑁(0, 𝑅𝑘)

The complete history of observations is:

𝑌𝜏 = {𝑦𝑙; 𝑡𝑙 ≤ 𝜏}

Our goal is to find the probability distribution for the state at time 𝑡.

𝑝(𝑥, 𝑡|𝑌𝑡)

The state between observation times is obtained from the difference equation. We need to update the state given new
observations:

𝑝(𝑥, 𝑡𝑘|𝑌𝑡𝑘) = 𝑝(𝑥, 𝑡𝑘|𝑦𝑘, 𝑌𝑡𝑘−1
)

We do so by applying Bayes’ rule:

𝑝(𝑥, 𝑡𝑘|𝑌𝑡𝑘) =
𝑝(𝑦𝑘|𝑥𝑘, 𝑌𝑡𝑘−1

)𝑝(𝑥, 𝑡𝑘|𝑌𝑡𝑘−1
)

𝑝(𝑦𝑘, 𝑌𝑡𝑘−1
)

Since the error is white in time:

𝑝(𝑦𝑘|𝑥𝑘, 𝑌𝑡𝑘−1
) = 𝑝(𝑦𝑘|𝑥𝑘)

We integrate the numerator to obtain a normalizing denominator:

𝑝(𝑦𝑘|𝑥𝑘, 𝑌𝑡𝑘−1
) =

∫︁
𝑝(𝑦𝑘|𝑥)𝑝(𝑥, 𝑡𝑘|𝑌𝑡𝑘−1

)𝑑𝑥

This allows us to update the probability after a new observation:

𝑝(𝑥, 𝑡𝑘|𝑌𝑡𝑘) =
𝑝(𝑦𝑘|𝑥)𝑝(𝑥, 𝑡𝑘|𝑌𝑡𝑘−1

)∫︀
𝑝(𝑦𝑘|𝜉)𝑝(𝜉, 𝑡𝑘|𝑌𝑡𝑘−1

)𝑑𝜉

95

Aether Documentation, Release 0.0.1

96 Chapter 43. Filtering theory

CHAPTER

FORTYFOUR

MONTE CARLO ENSEMBLES

Uncertainty quantification is incorporated at a fundamental level in Aether by making Monte Carlo ensemble simula-
tions standard. Users can specify a default range of acceptable parameters, coefficient, rates, and drivers.

Users can modify the ensemble input by specifying which parameters, coefficients, rates, and driver indices they would
like to vary and how many ensemble members they would like to create.

Post processing codes store raw ensemble members, create mean states, standard deviations, and statistical analyses
that provide confidence levels.

97

Aether Documentation, Release 0.0.1

98 Chapter 44. Monte Carlo ensembles

CHAPTER

FORTYFIVE

DOCKER

In order to implement a GitHub Actions workflow in which Armadillo, nlohmann_json, NetCDF and their dependencies
can be linked or included in the compiled model, Docker can be used to create an image on which these dependencies
can be kept.

The NetCDF documentation suggests using a package management tool to install NetCDF.

“The easiest way to get netCDF is through a package management program, such as rpm, yum, homebrew,
macports, adept, and others.”

This document describes how to use Conda to install NetCDF and Armadillo and how to create a Docker image that
can be activated by GitHub Actions in order to run automated tests when pull requests are made to a specified branch.

45.1 Conda

The conda package manager can quickly install the dependencies needed by Aether.

If you don’t have conda installed on your system, it merely requires downloading and running a shell script. For more
information, see conda’s installation guide.

If you would like to install the dependencies on your local machine without using a Docker image, the following com-
mands create and activate a virtual environment named aether-armadillo-json-netcdf in which the armadillo
and nlohmann_json header files and the netcdf-cxx4 library are installed.

conda create --name netcdf-armadillo-json --channel conda-forge netcdf-cxx4 armadillo␣
→˓nlohmann_json
conda activate netcdf-armadillo-json

45.2 Building a Docker image

Since conda was used to install the dependencies, it’s necessary to activate conda in a Docker file in order to create the
Docker image. This post by Itamar Turner-Trauring describes the difficulty of getting conda activate to run in the bash
shell

The bash shell started by Docker isn’t configured to activate a conda environment.

Building a Docker image

can be linked into the source code, it is useful to

Aether’s source code relies on a few dependencies in order to run properly:

• Armadillo

99

https://www.docker.com/
https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/getting_and_building_netcdf.html
https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://pythonspeed.com/articles/activate-conda-dockerfile/

Aether Documentation, Release 0.0.1

• NetCDF

• nlohmann JSON library

Aether manages these dependencies using git’s submodule capability. Submodules are their own repositories that are
contained within a larger repository. Submodules can nest within other submodules and their contents can be edited
and updated.

45.3 Verify your version of git

In order to get started, you will need to verify which version of git you have installed because git’s support for submod-
ules has changed throughout its various releases. These instructions will work for releases equal to or newer than git
2.7. In order to verify which version of git you are using, type:

git --version

45.4 Adding a submodule to a repository

mkdir external
git submodule add https://github.com/nlohmann/json external/json

45.5 Modifying your git config to show the status of submodules

git config --global status.submoduleSummary true

45.6 Organization of the .gitmodules file

The submodules are defined in a dot file stored in the root directory of the repository, .gitmodules.

cat .gitsubmodules
[submodule "external/json"]

path = external/json
url = https://github.com/nlohmann/json

45.7 Cloning a repository and its submodules

git clone https://github.com/AetherModel/Aether.git
cd Aether
git submodule init
git submodule update

100 Chapter 45. Docker

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Aether Documentation, Release 0.0.1

45.8 Removing a submodule from a repository

45.8.1 Temporary removal

git submodule deinit external/json

45.8.2 Permament removal

git submodule deinit external/json
git rm external/json
git commit -m "Removed json submodule"

45.8. Removing a submodule from a repository 101

Aether Documentation, Release 0.0.1

102 Chapter 45. Docker

CHAPTER

FORTYSIX

VERIFICATION TESTS

Verification tests determine whether a model does what it is designed to do. Aether is verified by constructing unit tests
and integration tests for the model’s functions during the development process, implementing a structured walk-through
policy for new model modules, comparing both intermediate and final simulation results to analytic results, and using
a range of input combinations that are both typical and atypical.

There are many challenges in performing these different verification tests, especially for models of large systems.
However, the benefits, which include but are not limited to catching bugs during software development and providing
users with information on appropriate input ranges, are significant.

Unit tests are run on a predetermined schedule to determine whether mistakes have been made in committed code, with
reports being sent to core developers.

One example of a commonly used unit test is the Sod shocktube, used to verify the performance of hydrodynamic
solvers in computational fluid dynamics codes.

This particular problem has an analytical solution and is thus highly useful for verification of the numerical implemen-
tation. Variations of this problem can be used to test each dimension in the code separately. Similar higher dimensional
versions of this test, such as the blast wave, can also be used for verification.

103

Aether Documentation, Release 0.0.1

104 Chapter 46. Verification tests

CHAPTER

FORTYSEVEN

CODING SCHOOL

The Aether Core Team runs a coding school that offers multiple levels of training on software and model development.
The school is logically scaled in experience level as a function of time, so that users who know nothing about using
models can attend the early days of the school, while more experienced users who would like to start contributing can
attend later days of the school.

Student hackathons are also conducted to add new features to the model. Overlapping of experience levels allows
users/contributors to interact and optimize training and development.

Sustainability of the coding school is promoted by encouraging students from previous years to act as assistants and
then as teachers.

Wider community involvement is encouraged through the creation and dissemination of online training courses and
videos.

These materials are developed by undergraduate and graduate students. They introduce relatively simple concepts to
students and other new users, allowing them to rapidly climb the steep learning curve involved in using a model like
Aether.

These tutorials are directed towards undergraduates and beginning graduate students with topics including logging into
NASA and NSF computing resources for the first time, managing the queue system, checking out and configuring the
model, submitting jobs, post processing, and making plots. These are simple tutorials, but the topics contained within
are either not available or not easily discoverable.

105

Aether Documentation, Release 0.0.1

106 Chapter 47. Coding school

CHAPTER

FORTYEIGHT

CONTRIBUTORS’ GUIDE

48.1 Contributing source code

Aether is an open-source model that welcomes your contributions. If you want to contribute to the project, you should
be familiar with the standard GitHub fork and pull request workflow. These are the basic steps involved in the workflow.

1. Fork the repository

2. Clone your fork

3. Checkout a feature branch

4. Make changes, commit them, and push them to your fork

5. Make a pull request

48.2 GitHub instructional tutorials

Many universities provide their faculty, staff and students access to instructional materials from LinkedIn Learning.
Two videos from this service are useful for learning the basics of git and GitHub:

• Git Essential Training

• Git Branches, Merges, and Remotes

48.3 Contributing documentation

Aether’s documentation follows the Google developer documentation style guide. If you want to contribute documen-
tation, you should read through the style guide and follow its guidelines as you write.

This documentation is output as HTML using the Sphinx documentation tool. The text is written using the reStruc-
turedText specification. See the reStructuredText Style Guide for formatting instructions.

107

https://guides.github.com/activities/forking/
https://www.linkedin.com/learning/git-essential-training-the-basics
https://www.linkedin.com/learning/git-branches-merges-and-remotes
https://developers.google.com/style
https://www.sphinx-doc.org/en/master/
https://docutils.sourceforge.io/docs/user/rst/quickstart.html
https://docutils.sourceforge.io/docs/user/rst/quickstart.html

Aether Documentation, Release 0.0.1

48.3.1 Adding pages to the documentation

Sphinx uses a table of contents tree, or toctree, directive to organize its contents. To add a new page, first create a
.rst document in the repository and then add a reference to the document you created in one of the toctree lists in
index.rst.

108 Chapter 48. Contributors’ Guide

CHAPTER

FORTYNINE

CORE TEAM

While Aether is an open-source project, its development is lead by a core team of scientists.

49.1 Team members

Aaron Ridley has significant experience developing models and teaching students. He has worked on porting the
TIEGCM to the Linux architecture and coupling it to a global MHD code. He rewrote the Assimilative Mapping of
Ionospheric Electrodynamics technique, developed an ionospheric electrodynamics solver, helped to develop the Space
Weather Modeling Framework, developed GITM, helped to develop a state-of-the-art orbit propagator for determining
the probability of collisions, and is currently coupling GITM to the SAMI3 model of the ionosphere. He teaches
engineering and science classes at every level. Prof. Ridley manages the effort to develop Aether and the supporting
education program. He leads team meetings, helps to develop the architecture of Aether (including core model, UQ,
DA, and OSSE support), leads the development and gathering of educational resources including the school lesson
planning, and helps with community support.

Jeffrey Anderson is a senior scientist at the National Center for Atmospheric Research where he leads the Data Assim-
ilation Research Section. He is the lead architect of Data Assimilation Research Testbed, including its application to
large models on high-performance computing. He has extensive experience in developing ensemble data assimilation
algorithms and applying them to earth system models and observations. Dr. Anderson has experience applying DART
to upper atmosphere and space weather models including GITM, TIEGCM, Open-GGCM, and WACCM-X and to
models that used the cubed-sphere grid like CAM-SE. He was the lead developer of an earlier version of the GFDL
atmospheric prediction system and the original developer of the GFDL Flexible Modeling System, a software system
for efficient model development.

Jared Bell is a planetary atmospheres modeler at GSFC. He has modified the Earth version of GITM to work at Titan,
and has helped to develop the Mars version of GITM. He has upgraded the time stepping in GITM to be 4th order, the
vertical boundary conditions to be 4th order, and the vertical solver from a Rusanov-type to the AUSM+-up solver. He
is currently working on an oblated spheroid version of GITM, allowing the radius to the lower boundary to vary as a
function of latitude, so that fast rotating planets, such as Jupiter and Saturn, can be simulated. His role on the Aether
team is to support the model development, specifically the solvers and the grid system, and its application.

Alex Glocer has extensive experience developing and coupling models of the space environment. He is the primary
developer of the Polar Wind Outflow Model having expanded it from a single field line code to a global code and cou-
pling it to a global magnetosphere model. He further expanded PWOM to a combined fluid-kinetic model, and worked
on the development of the multi- fluid MHD BATS-R-US magnetosphere model. He contributes to the development of
ring current and radiation belt models and their coupling with the global magnetosphere. His role on the Aether team
is to support the model development and application.

Angeline Burrell has extensive experience developing scientific programs in collaborative environments. She is ac-
tively working on model validation efforts at NRL, and is working to create a score card that can be used to track the
global and regional improvement of ionospheric models. Her role will include supporting the model development by

109

Aether Documentation, Release 0.0.1

performing code reviews, creating tools for model validation, validating model results against publicly available data,
and providing community support.

Meghan Burleigh is an early career scientist and has experience developing ionospheric models. She created GEMINI-
TIA, a local scale, multi-fluid model designed for the high-latitude ionosphere. In addition, she is working on incor-
porating 2-way coupling of GITM to the SWMF to facilitate self-consistent physics. She is developing a new course at
UM titled “Programming Practices for Scientists”, with Qusai Al Shidi, that focuses on teaching students good coding
practices, including methods that promote collaboration and facilitate version control. Her role on the Aether team
includes assisting with the development of the architecture of Aether, contributing to educational resources, teaching
at the coding school, and providing community support.

Qusai Al Shidi is an early career scientist with experience in both space physics and computer science, having de-
veloped a solar chromosphere model from scratch. The model is a two-fluid collisional MHD model. Ionosphere and
chromosphere MHD models are usually presented together since they share the same multi-fluid and collisional physics.
He is currently working on studying the energy transfer of ICME’s into storms by running multi-scale Space Weather
Modeling Framework simulations of the Sun-Earth system, from solar wind to ionosphere. His role will include Aether
development and developing software standards for Aether and its teaching.

Ben Johnson is an early career scientist who works with the NCAR software engineer and Jeff Anderson to develop
DART interfaces to Aether that will support the science requirements of the project. He assists software engineer
in implementing these interfaces, provide scientific expertise in the evaluation of both OSSE and real-data tests of
DART/Aether, and lead the implementation of enhanced documentation and tutorial material for ensemble data assim-
ilation.

110 Chapter 49. Core Team

CHAPTER

FIFTY

RESTRUCTUREDTEXT STYLE GUIDE

This page contains example reStructuredText syntax including title headers, citations, links, code snippets, tables, and
quotes.

1. Major Title

1. Minor Title

1. Micro Title

2. Link Examples

1. Full Citations in Footnotes

3. Useful Syntax

1. Blockquotes

2. Definition Lists

3. Field Lists

4. Code Examples

5. Nested Lists and Inline Literals

6. Bullet List

7. Tables

8. Citations

50.1 Major Title

50.1.1 Minor Title

Micro Title

50.2 Link Examples

• Working link will take us to the paragraph that begins with, “This link target works.”

Headers are also link targets by default. See, for example, how this makes a link to the useful syntax section even though
the header is capitalized and this link is not.

Links to external websites, such as the University of Michigan, are easily accomodated using < > to contain the link
and double underscores at the end of the link syntax.

111

https://umich.edu

Aether Documentation, Release 0.0.1

50.2.1 Full Citations in Footnotes

The Lorenz (1963)1 model is specified by a set of three ordinary differential equations. The Lorenz (1996)2 model is
more complex. The transition line below separates this paragraph from the two paragraphs below.

This link target works. It works because there is a new line separating the link target and the text. It is often the case
when using reStructuredText that proper syntax includes a new line to delineate the parts of a particular structure.

50.3 Useful Syntax

50.3.1 Blockquotes

Long sections of quoted text can be included simply by indenting the paragraph. Blockquotes can also be nested. Here,
we quote from Holton and Hakim (2013)3:

A problem with the traditional form of the omega equation is that there exists significant cancellation
between the two right-side terms. To expose this cancellation and develop two different forms of the
omega equation, we need to expand the right side of (6.42). This involves taking the gradient of vector
products, for which vector notation is not well suited.

Just as we use vector notation to simplify mathematical manipulations when scalar notation
becomes cumbersome, it is often prudent to move to indicial notation for situations where
vector notation becomes awkward.

50.3.2 Definition Lists

These lists can be used to introduce terms to the reader.

Forward Operator
A routine that interpolates values from the model grid to the observation location.

Observation Converter
A program that converts observations from other formats into obs_seq format.

50.3.3 Field Lists

Field lists can be used for describing properties of a model.

Model
Aether

Grid
Cube sphere

1 Lorenz, Edward N. (1963) “Deterministic Nonperiodic Flow.” Journal of the Atmospheric Sciences 20 (2): 130–141.
2 Lorenz, Edward N. (1996) “Predictability – A problem partly solved.” Seminar on Predictability I: ECMWF.
3 Holton, James R. and Gregory J. Hakim (2013) An Introduction to Dynamic Meteorology. Fifth Edition, 552 pages. Academic Press, San

Diego, USA.

112 Chapter 50. reStructuredText Style Guide

Aether Documentation, Release 0.0.1

50.4 Code Examples

reStructuredText recognizes C syntax and highlights it appropriately:

#include <stdio.h>
int main() {

printf("Hello, World!");
return 0;

}

Syntax highlighting also works in other languages that we might use for scripting such as bash:

#!/bin/bash

for a in `seq 1 10`; do
echo "$a/10 to Exit."
sleep 1;

done

echo "We are done bashing"

or python:

#!/usr/bin/env python

def save(obj):
return (obj.__class__, obj.__dict__)

def load(cls, attributes):
obj = cls.__new__(cls)
obj.__dict__.update(attributes)
return obj

50.5 Nested Lists and Inline Literals

Directories such as Aether/src/bfield.cpp or even commands such as grep -Rl dipole ./ can be called out
within a paragraph using what are known as “inline literals” – just wrap the desired text by two backticks.

1. Multiple commands can be stacked to instruct users to do several commands at once, even a list element:

git clone https://github.com/AetherModel/Aether.git

cd Aether

2. Here the list continues even after we include three lines of commands.

3. And we have a third list element.

Even more complicated list structures are possible by using spaces to indent the nested list to the same character column
as the content of the outer list.

1. First element in outer list

2. Second element in outer list

1. First element in nested list is indented by three spaces and separated from the outer list by a new line.

50.4. Code Examples 113

Aether Documentation, Release 0.0.1

2. Second element in nested list is also indented by three spaces.

3. Third element in outer list is not indented but is separated from the nested list by a new line.

50.6 Bullet List

• Bullet lists are easy to make

• Just make sure there is a new line before and after the list

50.7 Tables

Complex tables are straightforward to make. See here that the first row of table data after the table header has only one
column instead of three.

year month/day of first,middle,last obs_seq #### of first,middle,last
Include GPS when it becomes available?
2006 1/ 1, 1/16, 1/31 2954 - 2969 - 2984
2006 2/ 1, 2/16, 2/28 2985 - 3000 - 3012
2006 3/ 1, 3/16, 3/31 3013 - 3028 - 3043
2006 4/ 1, 4/16, 4/30 3044 - 3059 - 3073
2006 5/ 1, 5/16, 5/31 3074 - 3089 - 3104
2006 6/ 1, 6/16, 6/30 3105 - 3120 - 3134
2006 7/ 1, 7/16, 7/31 3135 - 3150 - 3165
2006 8/ 1, 8/16, 8/31 3166 - 3181 - 3196
2006 9/ 1, 9/16, 9/30 3197 - 3212 - 3226
2006 10/ 1, 10/16, 10/31 3227 - 3242 - 3257
2006 11/ 1, 11/16, 11/30 3258 - 3273 - 3287
2006 12/ 1, 12/16, 12/31 3288 - 3303 - 3318

Table 1: Demonstration of simple table syntax.
Right Left Center Default
12 12 12 12
123 123 123 123
1 1 1 1

50.8 Citations

Clicking on the number that denotes each citation links back to its original mention within the text.

114 Chapter 50. reStructuredText Style Guide

CHAPTER

FIFTYONE

GIT SUBMODULES

Aether’s source code relies on a few dependencies in order to run properly:

• Armadillo

• NetCDF

• nlohmann JSON library

Aether manages these dependencies using git’s submodule capability. Submodules are their own repositories that are
contained within a larger repository. Submodules can nest within other submodules and their contents can be edited
and updated.

51.1 Verify your version of git

In order to get started, you will need to verify which version of git you have installed because git’s support for submod-
ules has changed throughout its various releases. These instructions will work for releases equal to or newer than git
2.7. In order to verify which version of git you are using, type:

git --version

51.2 Adding a submodule to a repository

mkdir external
git submodule add https://github.com/nlohmann/json external/json

51.3 Modifying your git config to show the status of submodules

git config --global status.submoduleSummary true

115

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Aether Documentation, Release 0.0.1

51.4 Organization of the .gitmodules file

The submodules are defined in a dot file stored in the root directory of the repository, .gitmodules.

cat .gitsubmodules
[submodule "external/json"]

path = external/json
url = https://github.com/nlohmann/json

51.5 Cloning a repository and its submodules

git clone https://github.com/AetherModel/Aether.git
cd Aether
git submodule init
git submodule update

51.6 Removing a submodule from a repository

51.6.1 Temporary removal

git submodule deinit external/json

51.6.2 Permament removal

git submodule deinit external/json
git rm external/json
git commit -m "Removed json submodule"

116 Chapter 51. Git submodules

CHAPTER

FIFTYTWO

SPHINX AS A DOCUMENTATION TOOL

This is created using a documentation generation tool written in python known as Sphinx.

If you are a regular python user, and would like to use Sphinx, install it using the package management procedure with
which you are most comfortable.

52.1 Installing Conda

If you are novice python user, here are instructions for installing Sphinx using the package manager known as Conda
(short for Anaconda) on Mac OSX.

Open a terminal window and execute these three commands:

1. Download the installation script:

$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

2. Modify the execution permissions of the recently downloaded script:

$ chmod 755 ./Miniconda3-latest-MacOSX-x86_64.sh

3. Run the installation script and follow its instructions:

$./Miniconda3-latest-MacOSX-x86_64.sh

52.2 Downloading Sphinx

Now that Conda is installed, use it to download Sphinx. Close and reopen the terminal window to ensure conda is
activated.

1. Invoke Conda and instruct it to install two packages, Sphinx and the “Read the Docs” CSS theme for Sphinx:

$ conda install sphinx sphinx-rtd-theme

117

https://www.sphinx-doc.org/en/master/
https://docs.conda.io/en/latest/

Aether Documentation, Release 0.0.1

52.3 Clone the Repository

You’re ready to clone the repository:

$ git clone https://github.com/AetherModel/AetherDocumentation.git
$ cd AetherDocumentation

52.4 Edit Files and Remake the Documentation

The files that comprise the documentation are written in reStructuredText which offers a reasonably simple syntax
for writing documentation while still accommodating the elements needed for technical writing such as equations,
references, code snippets, tables, etc.

Find the reStructuredText documents contained in this repository:

find . -name "*.rst"

Edit them using your favorite text editor and then remake the documentation:

make clean
make html

View the remade documentation in your favorite web browser by opening the ./_build/html/index.html using
your graphical user interface or via the command line:

open ./_build/html/index.html

118 Chapter 52. Sphinx as a Documentation Tool

https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html

	GitHub
	Download the source code from GitHub

	System requirements
	C and C++ compilers
	Python
	NetCDF

	Pleiades
	Environment overview
	Logging on and getting onto a PFE
	Home and scratch
	Accounting

	Installing CESM
	Download CESM on a laptop or Cheyenne
	Log on to a pfe node

	Creating a cube sphere case
	config_machines.xml
	Available grids
	Building a case
	Identifying your GroupID

	Submitting a job
	Restart file
	References

	Grid code
	CAM-SE
	Overview
	First attempt
	Build log from the first attempt

	Second attempt
	Resulting object and library files

	CSLAM
	Compatible grids
	Location within CESM
	The meaning of the physics grid
	Running the physics grid at lower resolution
	References

	Terminology
	CSLAM
	FVM
	GLL
	References

	Parallel I/O
	Makefile
	buildlib.pio

	Overview
	Nomenclature
	Dynamical cores
	Physics packages

	Coding standards
	Directory structure
	References

	advection
	atmos_phys
	chemistry
	control
	cpl
	dynamics
	ionosphere
	physics
	unit_drivers
	utils
	WACCM-X
	Tutorial
	First attempt at building FHISTX for the ne16 grid
	Second attempt at building FHISTX for the ne16 grid
	Failed attempts until success with the ne30 grid
	Getting the compiler to save the post-preprocessed files
	buildlib.py

	Appending -E to the compiler flags
	Appending -save-temps to the compiler flags
	References
	WACCM-X
	Tutorial
	First attempt at building FHISTX for the ne16 grid
	Second attempt at building FHISTX for the ne16 grid
	Failed attempts until success with the ne30 grid
	Getting the compiler to save the post-preprocessed files
	buildlib.py

	Appending -E to the compiler flags
	Appending -save-temps to the compiler flags
	References
	Compiling with mkmf
	Errors encountered
	seq_timemgr_mod.F90
	ESMF_FIELD

	Linking to ESMF
	DART
	References

	Filtering theory
	Monte Carlo ensembles
	Docker
	Conda
	Building a Docker image
	Verify your version of git
	Adding a submodule to a repository
	Modifying your git config to show the status of submodules
	Organization of the .gitmodules file
	Cloning a repository and its submodules
	Removing a submodule from a repository
	Temporary removal
	Permament removal

	Verification tests
	Coding school
	Contributors’ Guide
	Contributing source code
	GitHub instructional tutorials
	Contributing documentation
	Adding pages to the documentation

	Core Team
	Team members

	reStructuredText Style Guide
	Major Title
	Minor Title
	Micro Title

	Link Examples
	Full Citations in Footnotes

	Useful Syntax
	Blockquotes
	Definition Lists
	Field Lists

	Code Examples
	Nested Lists and Inline Literals
	Bullet List
	Tables
	Citations

	Git submodules
	Verify your version of git
	Adding a submodule to a repository
	Modifying your git config to show the status of submodules
	Organization of the .gitmodules file
	Cloning a repository and its submodules
	Removing a submodule from a repository
	Temporary removal
	Permament removal

	Sphinx as a Documentation Tool
	Installing Conda
	Downloading Sphinx
	Clone the Repository
	Edit Files and Remake the Documentation

